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Poly(lactide-co-glycolide) (PLGA) nanoparticles are promising drug delivery systems, widely recognized 
for their ability to overcome various limitations associated with conventional formulations. However, 
designing and optimizing such formulations is a complex and non-trivial process that heavily relies on 
a lengthy, iterative approach, often involving trial and error. To address the limitations of traditional 
approaches, formulation scientists are increasingly incorporating artificial intelligence, particularly 
machine learning, to rationalize and accelerate the process. Despite decades of intensive research 
into PLGA nanoparticles, a notable shortage remains in the availability of comprehensive open-source 
datasets essential for driving this accelerated development process forward. Here, we present a 
literature-curated dataset of 433 PLGA nanoparticle formulations encompassing 65 small molecules. 
The dataset aims to bridge existing data gaps and provide a comprehensive resource for research on 
nanoparticle formulations.

Background & Summary
Over the past few decades, considerable research has been dedicated to the development of advanced drug deliv-
ery systems to enhance the safety and efficacy of medications1. Among these, polymeric nanoparticles (PNPs), 
have demonstrated potential to address the various challenges of some therapeutics, including limited stabil-
ity and solubility2, poor membrane transport3–5, and insufficient targeting6. PNPs are nano-sized drug carriers 
made from a polymeric matrix, capable of encapsulating both hydrophobic and hydrophilic molecules. These 
carriers can be engineered to exhibit specific properties, including particle size, payload capacity, and drug 
release kinetics7,8. By tailoring these properties, PNPs can be designed to optimize the delivery of drugs for a 
wide range of applications9.

Despite decades of research, the development of PNPs remains a complex and non-trivial process. Typically, 
this process involves the selection of appropriate formulation parameters, including materials (e.g., polymers 
and surfactants), preparation method (e.g., nanoprecipitation or emulsion-based methods), and processing 
parameters (e.g., solvents, and initial composition ratios). These factors can vary widely and significantly impact 
the performance of the formulation. The goal of formulation optimization is to explore this extensive design 
space and identify formulation candidates that achieve the desired performance10.

Traditionally, optimizing PNPs relied on an iterative process, which was time-consuming, resource-intensive, 
and costly. To overcome these challenges, recent advances in artificial intelligence (AI), particularly machine 
learning (ML), have been proposed as more efficient alternatives to streamline and rationalize the optimiza-
tion process11. In these studies, ML typically serves as a data-driven approach by leveraging existing data to 
build predictive computational models that can aid in decision-making12–14. By integrating ML into formulation 
development, researchers can accelerate the process while also allowing for a wider exploration of the design 
spaces that were previously inaccessible15,16.

A major challenge in applying ML to drug formulation design is the limited availability of comprehensive 
and high-quality data. While more datasets are becoming available, a significant gap persists in open-source 
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datasets that the broader research community can easily access and utilize17–19. For instance, in the context of 
PNP formulations, even for well-established and extensively studied polymers such as poly(lactic-co-glycolic) 
acid (PLGA), no such open-access dataset currently exists20. To advance data-driven approaches in formulation 
development, we present a curated dataset of PLGA nanoparticles loaded with small molecules, sourced from 
published literature (Fig. 1). The dataset includes 433 formulations, consisting of 65 small molecules, primarily 
drugs and drug-like compounds. For each formulation, the dataset includes 18 associated features (Table 1) that 
describe properties of the small molecule, excipients and overall formulation characteristics. Additionally, three 
key performance metrics are provided: particle size, encapsulation efficiency (EE), and loading capacity (LC). 
These features were selected to capture a broad range of variables that are critical both to the formulation process 
and to the in vitro or in vivo performance of the resulting PNP systems. For example, the physiochemical prop-
erties of the small molecule and the processing parameters such as choice of solvent for dissolving both PLGA 
and the small molecule are included, as these factors can influence formulation properties and performance.

To gain a more in-depth understanding of the dataset, data analysis was conducted to evaluate feature dis-
tributions and correlations. The feature distributions in the dataset (Fig. 2) reflect a relatively narrow scope of 
exploration in the published literature. For instance, the lipophilicity (logP) of the small molecules tend to fall 
within a limited range, indicating constrained chemical diversity. Correlation analysis (Fig. 3) revealed several 
expected relationships between certain features, such as a strong positive correlation between the drug to pol-
ymer ratio and LC. Additionally, a moderate correlation was observed between the PLGA LA/GA ratio and 
particle size, however, further investigation is needed to determine if this relationship holds significance.

The dataset presented is intended to serve as a comprehensive resource for researchers. It aims to provide 
insight into the design of PLGA nanoparticles and address the existing gap in available datasets. Furthermore, 
it is intended to be a readily accessible tool that supports data-driven approaches and accelerates PNP 
development.

Fig. 1  A summary of the workflow used to generate a dataset of small molecule loaded PLGA nanoparticles. 
Literature review was conducted to identify studies with relevant data, followed by data collection. The collected 
data was processed and feature-engineered to generate a comprehensive and structured dataset. Data analysis 
was then conducted to examine the distribution of features and identify correlations between features.

Feature Units Description

polymer_MW Da Molecular weight of the PLGA polymer

LA/GA Ratio of lactide to glycolide in the PLGA polymer.

mol_MW kDa Molecular weight of the small molecule

mol_logP LogP of the small molecule

mol_TPSA Å² Topological polar surface area of the small molecule

mol_melting_point °C Melting point of the small molecule

mol_Hacceptors Count of the number of hydrogen acceptors on the small molecule

mol_Hdonors Count of the number of hydrogen donors on the small molecule

mol_heteroatoms Count of the number of heteroatoms on the small molecule

drug/polymer Initial weight ratio of small molecule to polymer

surfactant_concentration %w/v Concentration of the surfactant in the aqueous phase

surfactant_HLB Hydrophilic–lipophilic balance of the surfactant in the aqueous phase

aqueous/organic Initial volume ratio of the aqueous to organic phase

pH pH of the aqueous phase

solvent_polarity_index Polarity index of the solvent used as the organic phase

particle_size nm Diameter of the particles

EE %w/w Percentage of the small molecule encapsulated by weight relative to the total weight of the PNPs

LC %w/w Percentage of the small molecule encapsulated by weight relative to the total weight of the loaded PNPs

Table 1.  Description of features in the dataset, including each feature’s name, units, and definition.
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Methods
Literature review and data collection.  A dataset of formulation compositions for small molecule loaded 
PLGA based nanoparticles was curated from published literature. A search was conducted in May 2024 using Web 
of Science with the keywords: “PLGA”, “drug delivery”, “nanoparticles” or “nanospheres”, and “nanoprecipitation” or 
“interfacial deposition” or “solvent displacement” or “solvent injection”. This search yielded 812 articles, which were 
then manually screened for relevance and completeness of the required data. Articles were only included if they met the 
following criteria: (1) nanoparticles were prepared using the nanoprecipitation method, wherein a small molecule and 
PLGA polymer are dissolved in an organic solvent and then dispersed into an aqueous phase, with or without a sur-
factant, (2) the formulations were designed for small molecules, excluding biologics, and (3) no active targeting mecha-
nisms were employed. In addition, only articles that reported or enabled calculation of the features listed in Table 1 were 
included. This manual screening resulted in 59 articles for data collection. Data collected from these articles included 
features describing the polymer, small molecule, formulation parameters, and the performance of the formulation.

Data preprocessing and feature engineering.  After data collection, preprocessing and feature engi-
neering were performed to clean the dataset, transform data, and incorporate additional features related to the 
properties of the solvents, excipients, and small molecules. In cases where either EE or LC was not reported, it was 
calculated using the following equations.

EE
LC mass of the polymer used mg
mass of the small molecule used mg
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The pH values of the aqueous phase were categorized into discrete ranges: values below 4 were assigned a label of −1,  
values between 4 and 6 were labeled as 0, values between 6 and 8 were also assigned a label of 0, and values above 8 
were labeled as 1. In cases where only the inherent viscosity of the PLGA polymer was reported, the molecular weight 
was estimated using the Mark-Houwink equation21. Subsequently, additional descriptors for the small molecules were 
calculated using the RDKit toolkit based on their Simplified Molecular Input Line Entry System (SMILES).

Data analysis.  Data analysis was performed using a custom codebase previously developed to analyze 
microparticle datasets, focusing on distribution and correlation analyses19. The distribution analysis (Fig. 2) is 
represented as violin plots to represent the central 70% of the data for each feature. Additionally, a correlation 
matrix (Fig. 3) was generated to display the pairwise Pearson correlations between all formulation parameters.

Data Records
The final dataset, which includes all relevant features, is provided alongside the initial dataset curated from the 
literature with appropriate references. Additional datasets containing data for small molecules, excipients, and 
solvents are also provided. The data is openly accessible on Mendeley Data (https://data.mendeley.com/datasets/
sbjf5csrdm/1)22. Table 2 presents an overview and detailed description of all the datasets provided.

Fig. 2  Violin plots depicting the distribution of the formulation parameters. The central 70% (15th to 85th 
percentile) is shown in red, while the remaining 30% is shown in blue.
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Technical Validation
Data collection from literature was conducted independently by two individuals. The resulting datasets were 
then cross validated to identify and resolve any discrepancies. This approach was taken to ensure consistency 
with reported data and to minimize bias in the manual selection process.

Code availability
The code used in this work was originally developed in a previously published study and is publicly available on 
Mendeley Data (https://data.mendeley.com/datasets/zzvtdrcy76/2)19.
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Fig. 3  Correlation matrix showing pairwise Pearson correlations between all the formulation parameters. The 
colour intensity represents the magnitude of the correlation, where red indicates positive correlations and blue 
indicates negative correlations.

File name Description

NP_dataset.csv Final and complete dataset with all features

NP_dataset_formulations.csv Initial dataset of formulation compositions sourced from literature

NP_dataset_small_molecules.csv Dataset of small molecules with their chemical structures

NP_dataset_surfactants.csv Dataset of surfactants with hydrophilic-lipophilic balance (HLB)

NP_dataset_solvents.csv Dataset of solvents with polarity index

Table 2.  The datasets provided with a description of the file’s content.
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