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Poly(lactide-co-glycolide) (PLGA) nanoparticles are promising drug delivery systems, widely recognized
for their ability to overcome various limitations associated with conventional formulations. However,
designing and optimizing such formulations is a complex and non-trivial process that heavily relies on
alengthy, iterative approach, often involving trial and error. To address the limitations of traditional
approaches, formulation scientists are increasingly incorporating artificial intelligence, particularly
machine learning, to rationalize and accelerate the process. Despite decades of intensive research
into PLGA nanoparticles, a notable shortage remains in the availability of comprehensive open-source
datasets essential for driving this accelerated development process forward. Here, we present a
literature-curated dataset of 433 PLGA nanoparticle formulations encompassing 65 small molecules.
The dataset aims to bridge existing data gaps and provide a comprehensive resource for research on
nanoparticle formulations.

Background & Summary

Over the past few decades, considerable research has been dedicated to the development of advanced drug deliv-
ery systems to enhance the safety and efficacy of medications'. Among these, polymeric nanoparticles (PNPs),
have demonstrated potential to address the various challenges of some therapeutics, including limited stabil-
ity and solubility?, poor membrane transport*-, and insufficient targeting®. PNPs are nano-sized drug carriers
made from a polymeric matrix, capable of encapsulating both hydrophobic and hydrophilic molecules. These
carriers can be engineered to exhibit specific properties, including particle size, payload capacity, and drug
release kinetics”®. By tailoring these properties, PNPs can be designed to optimize the delivery of drugs for a
wide range of applications®.

Despite decades of research, the development of PNPs remains a complex and non-trivial process. Typically,
this process involves the selection of appropriate formulation parameters, including materials (e.g., polymers
and surfactants), preparation method (e.g., nanoprecipitation or emulsion-based methods), and processing
parameters (e.g., solvents, and initial composition ratios). These factors can vary widely and significantly impact
the performance of the formulation. The goal of formulation optimization is to explore this extensive design
space and identify formulation candidates that achieve the desired performance®.

Traditionally, optimizing PNPs relied on an iterative process, which was time-consuming, resource-intensive,
and costly. To overcome these challenges, recent advances in artificial intelligence (AI), particularly machine
learning (ML), have been proposed as more efficient alternatives to streamline and rationalize the optimiza-
tion process'!. In these studies, ML typically serves as a data-driven approach by leveraging existing data to
build predictive computational models that can aid in decision-making'*"'%. By integrating ML into formulation
development, researchers can accelerate the process while also allowing for a wider exploration of the design
spaces that were previously inaccessible!'>16.

A major challenge in applying ML to drug formulation design is the limited availability of comprehensive
and high-quality data. While more datasets are becoming available, a significant gap persists in open-source
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Fig. 1 A summary of the workflow used to generate a dataset of small molecule loaded PLGA nanoparticles.
Literature review was conducted to identify studies with relevant data, followed by data collection. The collected
data was processed and feature-engineered to generate a comprehensive and structured dataset. Data analysis
was then conducted to examine the distribution of features and identify correlations between features.

Feature Units | Description

polymer_ MW Da Molecular weight of the PLGA polymer

LA/GA Ratio of lactide to glycolide in the PLGA polymer.

mol_MW kDa Molecular weight of the small molecule

mol_logP LogP of the small molecule

mol_TPSA A? Topological polar surface area of the small molecule
mol_melting_point °C Melting point of the small molecule

mol_Hacceptors Count of the number of hydrogen acceptors on the small molecule
mol_Hdonors Count of the number of hydrogen donors on the small molecule
mol_heteroatoms Count of the number of heteroatoms on the small molecule
drug/polymer Initial weight ratio of small molecule to polymer

surfactant_concentration | %w/v | Concentration of the surfactant in the aqueous phase

surfactant_HLB Hydrophilic-lipophilic balance of the surfactant in the aqueous phase

aqueous/organic Initial volume ratio of the aqueous to organic phase

pH pH of the aqueous phase

solvent_polarity_index Polarity index of the solvent used as the organic phase

particle_size nm Diameter of the particles

EE %w/w | Percentage of the small molecule encapsulated by weight relative to the total weight of the PNPs

LC %w/w | Percentage of the small molecule encapsulated by weight relative to the total weight of the loaded PNPs

Table 1. Description of features in the dataset, including each feature’s name, units, and definition.

datasets that the broader research community can easily access and utilize!”"'°. For instance, in the context of
PNP formulations, even for well-established and extensively studied polymers such as poly(lactic-co-glycolic)
acid (PLGA), no such open-access dataset currently exists?’. To advance data-driven approaches in formulation
development, we present a curated dataset of PLGA nanoparticles loaded with small molecules, sourced from
published literature (Fig. 1). The dataset includes 433 formulations, consisting of 65 small molecules, primarily
drugs and drug-like compounds. For each formulation, the dataset includes 18 associated features (Table 1) that
describe properties of the small molecule, excipients and overall formulation characteristics. Additionally, three
key performance metrics are provided: particle size, encapsulation efficiency (EE), and loading capacity (LC).
These features were selected to capture a broad range of variables that are critical both to the formulation process
and to the in vitro or in vivo performance of the resulting PNP systems. For example, the physiochemical prop-
erties of the small molecule and the processing parameters such as choice of solvent for dissolving both PLGA
and the small molecule are included, as these factors can influence formulation properties and performance.

To gain a more in-depth understanding of the dataset, data analysis was conducted to evaluate feature dis-
tributions and correlations. The feature distributions in the dataset (Fig. 2) reflect a relatively narrow scope of
exploration in the published literature. For instance, the lipophilicity (logP) of the small molecules tend to fall
within a limited range, indicating constrained chemical diversity. Correlation analysis (Fig. 3) revealed several
expected relationships between certain features, such as a strong positive correlation between the drug to pol-
ymer ratio and LC. Additionally, a moderate correlation was observed between the PLGA LA/GA ratio and
particle size, however, further investigation is needed to determine if this relationship holds significance.

The dataset presented is intended to serve as a comprehensive resource for researchers. It aims to provide
insight into the design of PLGA nanoparticles and address the existing gap in available datasets. Furthermore,
it is intended to be a readily accessible tool that supports data-driven approaches and accelerates PNP
development.

SCIENTIFICDATA|  (2025) 12:1182 | https://doi.org/10.1038/s41597-025-05520-9 2


https://doi.org/10.1038/s41597-025-05520-9

www.nature.com/scientificdata/

w
o
S

[112.0, 48.71] [1.0, 3.0]| 125513, 602.8] s 12.0, 4.2]| 13277,12001| 5
B 200 5 —~ < 250
= 150 4 g ° £ H
g 3 g, 3 5200
1 a
g 100 33 e 5 5 150
s 2 g g
S 50 2 <1100
0 €
0 1 50
2
15 5 1.0 225 30
15 : 01,03 =% 13.0,29.0]
w 4 2 0.8 S 2.0
] g 5 g 2 22
2 10 2 = € © I
? €3 5 10 Sos6 515 o
I+ k] 5 = 51 s
© I ki (=Y g It
T 2 K] 504 210 g
3 s g 5 5 2 5 5 10
£ 1 2 o2 205 a
5
s
0 0.0 & 0.0 0
>
a
40 2.0, 6.01] w7 (5.1,51]| 10001  [{1219,2a10]| 0
[
© 2 € 80
£ 30 £ £ 800
N £
g £6 % 600 3 60
720 3 a o
] 9 < 400 w40
Z10 g° g
© 2 g 200 20
2
0 4 0 0

Fig. 2 Violin plots depicting the distribution of the formulation parameters. The central 70% (15th to 85th
percentile) is shown in red, while the remaining 30% is shown in blue.

Methods

Literature review and data collection. A dataset of formulation compositions for small molecule loaded
PLGA based nanoparticles was curated from published literature. A search was conducted in May 2024 using Web
of Science with the keywords: “PLGA, “drug delivery”, “nanoparticles” or “nanospheres’, and “nanoprecipitation” or
“interfacial deposition” or “solvent displacement” or “solvent injection”. This search yielded 812 articles, which were
then manually screened for relevance and completeness of the required data. Articles were only included if they met the
following criteria: (1) nanoparticles were prepared using the nanoprecipitation method, wherein a small molecule and
PLGA polymer are dissolved in an organic solvent and then dispersed into an aqueous phase, with or without a sur-
factant, (2) the formulations were designed for small molecules, excluding biologics, and (3) no active targeting mecha-
nisms were employed. In addition, only articles that reported or enabled calculation of the features listed in Table 1 were
included. This manual screening resulted in 59 articles for data collection. Data collected from these articles included
features describing the polymer, small molecule, formulation parameters, and the performance of the formulation.

Data preprocessing and feature engineering.  After data collection, preprocessing and feature engi-
neering were performed to clean the dataset, transform data, and incorporate additional features related to the
properties of the solvents, excipients, and small molecules. In cases where either EE or LC was not reported, it was
calculated using the following equations.

LC x mass of the polymer used (mg)

EE% = x 100%

mass of the small molecule used (mg)

EE x mass of the small molecule used (mg)

LC% = x 100%

mass of the polymer used (mg)

The pH values of the aqueous phase were categorized into discrete ranges: values below 4 were assigned alabel of —1,
values between 4 and 6 were labeled as 0, values between 6 and 8 were also assigned a label of 0, and values above 8
were labeled as 1. In cases where only the inherent viscosity of the PLGA polymer was reported, the molecular weight
was estimated using the Mark-Houwink equation?'. Subsequently, additional descriptors for the small molecules were
calculated using the RDKit toolkit based on their Simplified Molecular Input Line Entry System (SMILES).

Data analysis. Data analysis was performed using a custom codebase previously developed to analyze
microparticle datasets, focusing on distribution and correlation analyses'. The distribution analysis (Fig. 2) is
represented as violin plots to represent the central 70% of the data for each feature. Additionally, a correlation
matrix (Fig. 3) was generated to display the pairwise Pearson correlations between all formulation parameters.

Data Records

The final dataset, which includes all relevant features, is provided alongside the initial dataset curated from the
literature with appropriate references. Additional datasets containing data for small molecules, excipients, and
solvents are also provided. The data is openly accessible on Mendeley Data (https://data.mendeley.com/datasets/
sbjf5csrdm/1)?. Table 2 presents an overview and detailed description of all the datasets provided.
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Fig. 3 Correlation matrix showing pairwise Pearson correlations between all the formulation parameters. The
colour intensity represents the magnitude of the correlation, where red indicates positive correlations and blue
indicates negative correlations.

File name

Description

NP_dataset.csv

Final and complete dataset with all features

NP_dataset_formulations.csv

Initial dataset of formulation compositions sourced from literature

NP_dataset_small_molecules.csv

Dataset of small molecules with their chemical structures

NP_dataset_surfactants.csv

Dataset of surfactants with hydrophilic-lipophilic balance (HLB)

NP_dataset_solvents.csv

Dataset of solvents with polarity index

Table 2. The datasets provided with a description of the file’s content.

Technical Validation

Data collection from literature was conducted independently by two individuals. The resulting datasets were
then cross validated to identify and resolve any discrepancies. This approach was taken to ensure consistency

with reported data and to minimize bias in the manual selection process.

Code availability

The code used in this work was originally developed in a previously published study and is publicly available on
Mendeley Data (https://data.mendeley.com/datasets/zzvtdrcy76/2)".
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